Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JAMA Netw Open ; 6(4): e238866, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2300777

RESUMEN

Importance: SARS-CoV-2 infection may lead to acute and chronic sequelae. Emerging evidence suggests a higher risk of diabetes after infection, but population-based evidence is still sparse. Objective: To evaluate the association between COVID-19 infection, including severity of infection, and risk of diabetes. Design, Setting, and Participants: This population-based cohort study was conducted in British Columbia, Canada, from January 1, 2020, to December 31, 2021, using the British Columbia COVID-19 Cohort, a surveillance platform that integrates COVID-19 data with population-based registries and administrative data sets. Individuals tested for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction (RT-PCR) were included. Those who tested positive for SARS-CoV-2 (ie, those who were exposed) were matched on sex, age, and collection date of RT-PCR test at a 1:4 ratio to those who tested negative (ie, those who were unexposed). Analysis was conducted January 14, 2022, to January 19, 2023. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: The primary outcome was incident diabetes (insulin dependent or not insulin dependent) identified more than 30 days after the specimen collection date for the SARS-CoV-2 test with a validated algorithm based on medical visits, hospitalization records, chronic disease registry, and prescription drugs for diabetes management. Multivariable Cox proportional hazard modeling was performed to evaluate the association between SARS-CoV-2 infection and diabetes risk. Stratified analyses were performed to assess the interaction of SARS-CoV-2 infection with diabetes risk by sex, age, and vaccination status. Results: Among 629 935 individuals (median [IQR] age, 32 [25.0-42.0] years; 322 565 females [51.2%]) tested for SARS-CoV-2 in the analytic sample, 125 987 individuals were exposed and 503 948 individuals were unexposed. During the median (IQR) follow-up of 257 (102-356) days, events of incident diabetes were observed among 608 individuals who were exposed (0.5%) and 1864 individuals who were not exposed (0.4%). The incident diabetes rate per 100 000 person-years was significantly higher in the exposed vs nonexposed group (672.2 incidents; 95% CI, 618.7-725.6 incidents vs 508.7 incidents; 95% CI, 485.6-531.8 incidents; P < .001). The risk of incident diabetes was also higher in the exposed group (hazard ratio [HR], 1.17; 95% CI, 1.06-1.28) and among males (adjusted HR, 1.22; 95% CI, 1.06-1.40). The risk of diabetes was higher among people with severe disease vs those without COVID-19, including individuals admitted to the intensive care unit (HR, 3.29; 95% CI, 1.98-5.48) or hospital (HR, 2.42; 95% CI, 1.87-3.15). The fraction of incident diabetes cases attributable to SARS-CoV-2 infection was 3.41% (95% CI, 1.20%-5.61%) overall and 4.75% (95% CI, 1.30%-8.20%) among males. Conclusions and Relevance: In this cohort study, SARS-CoV-2 infection was associated with a higher risk of diabetes and may have contributed to a 3% to 5% excess burden of diabetes at a population level.


Asunto(s)
COVID-19 , Diabetes Mellitus , Masculino , Femenino , Humanos , Adulto , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Cohortes , Diabetes Mellitus/epidemiología , Colombia Británica/epidemiología
2.
Int J Infect Dis ; 127: 116-123, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2240879

RESUMEN

OBJECTIVES: With the uptake of COVID-19 vaccines, there is a need for population-based studies to assess risk factors for COVID-19-related hospitalization after vaccination and how they differ from unvaccinated individuals. METHODS: We used data from the British Columbia COVID-19 Cohort, a population-based cohort that includes all individuals (aged ≥18 years) who tested positive for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction from January 1, 2021 (after the start of vaccination program) to December 31, 2021. We used multivariable logistic regression models to assess COVID-19-related hospitalization risk by vaccination status and age group among confirmed COVID-19 cases. RESULTS: Of the 162,509 COVID-19 cases included in the analysis, 8,546 (5.3%) required hospitalization. Among vaccinated individuals, an increased odds of hospitalization with increasing age was observed for older age groups, namely those aged 50-59 years (odds ratio [OR] = 2.95, 95% confidence interval [CI]: 2.01-4.33), 60-69 years (OR = 4.82, 95% CI: 3.29, 7.07), 70-79 years (OR = 11.92, 95% CI: 8.02, 17.71), and ≥80 years (OR = 24.25, 95% CI: 16.02, 36.71). However, among unvaccinated individuals, there was a graded increase in odds of hospitalization with increasing age, starting at age group 30-39 years (OR = 2.14, 95% CI: 1.90, 2.41) to ≥80 years (OR = 41.95, 95% CI: 35.43, 49.67). Also, comparing all the age groups to the youngest, the observed magnitude of association was much higher among unvaccinated individuals than vaccinated ones. CONCLUSION: Alongside a number of comorbidities, our findings showed a strong association between age and COVID-19-related hospitalization, regardless of vaccination status. However, age-related hospitalization risk was reduced two-fold by vaccination, highlighting the need for vaccination in reducing the risk of severe disease and subsequent COVID-19-related hospitalization across all population groups.


Asunto(s)
COVID-19 , Humanos , Anciano , Adolescente , Adulto , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Cohortes , SARS-CoV-2 , Factores de Riesgo , Colombia Británica/epidemiología , Vacunación , Hospitalización
3.
Open Forum Infect Dis ; 9(12): ofac640, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2190081

RESUMEN

Background: Long coronavirus disease (COVID) patients experience persistent symptoms after acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Healthcare utilization data could provide critical information on the disease burden of long COVID for service planning; however, not all patients are diagnosed or assigned long COVID diagnostic codes. We developed an algorithm to identify individuals with long COVID using population-level health administrative data from British Columbia (BC), Canada. Methods: An elastic net penalized logistic regression model was developed to identify long COVID patients based on demographic characteristics, pre-existing conditions, COVID-19-related data, and all symptoms/conditions recorded >28-183 days after the COVID-19 symptom onset/reported (index) date of known long COVID patients (n = 2430) and a control group (n = 24 300), selected from all adult COVID-19 cases in BC with an index date on/before October 31, 2021 (n = 168 111). Known long COVID cases were diagnosed in a clinic and/or had the International Classification of Diseases, Tenth Revision, Canada (ICD-10-CA) code for "post COVID-19 condition" in their records. Results: The algorithm retained known symptoms/conditions associated with long COVID, demonstrating high sensitivity (86%), specificity (86%), and area under the receiver operator curve (93%). It identified 25 220 (18%) long COVID patients among the remaining 141 381 adult COVID-19 cases, >10 times the number of known cases. Known and predicted long COVID patients had comparable demographic and health-related characteristics. Conclusions: Our algorithm identified long COVID patients with a high level of accuracy. This large cohort of long COVID patients will serve as a platform for robust assessments on the clinical course of long COVID, and provide much needed concrete information for decision-making.

4.
J Am Coll Cardiol ; 80(20): 1900-1908, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2095536

RESUMEN

BACKGROUND: Postmarketing evaluations have linked myocarditis to COVID-19 mRNA vaccines. However, few population-based analyses have directly compared the safety of the 2 mRNA COVID-19 vaccines. OBJECTIVES: This study aimed to compare the risk of myocarditis, pericarditis, and myopericarditis between BNT162b2 and mRNA-1273. METHODS: We used data from the British Columbia COVID-19 Cohort (BCC19C), a population-based cohort study. The exposure was the second dose of an mRNA vaccine. The outcome was diagnosis of myocarditis, pericarditis, or myopericarditis during a hospitalization or an emergency department visit within 21 days of the second vaccination dose. We performed multivariable logistic regression to assess the association between vaccine product and the outcomes of interest. RESULTS: The rates of myocarditis and pericarditis per million second doses were higher for mRNA-1273 (n = 31, rate 35.6; 95% CI: 24.1-50.5; and n = 20, rate 22.9; 95% CI: 14.0-35.4, respectively) than BNT162b2 (n = 28, rate 12.6; 95% CI: 8.4-18.2 and n = 21, rate 9.4; 95% CI: 5.8-14.4, respectively). mRNA-1273 vs BNT162b2 had significantly higher odds of myocarditis (adjusted OR [aOR]: 2.78; 95% CI: 1.67-4.62), pericarditis (aOR: 2.42; 95% CI: 1.31-4.46) and myopericarditis (aOR: 2.63; 95% CI: 1.76-3.93). The association between mRNA-1273 and myocarditis was stronger for men (aOR: 3.21; 95% CI: 1.77-5.83) and younger age group (18-39 years; aOR: 5.09; 95% CI: 2.68-9.66). CONCLUSIONS: Myocarditis/pericarditis following mRNA COVID-19 vaccines is rare, but we observed a 2- to 3-fold higher odds among individuals who received mRNA-1273 vs BNT162b2. The rate of myocarditis following mRNA-1273 receipt is highest among younger men (age 18-39 years) and does not seem to be present at older ages. Our findings may have policy implications regarding the choice of vaccine offered.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Miocarditis , Pericarditis , Adolescente , Adulto , Humanos , Masculino , Adulto Joven , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Estudios de Cohortes , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Miocarditis/epidemiología , Miocarditis/etiología , Miocarditis/diagnóstico , Pericarditis/epidemiología , Pericarditis/etiología , Pericarditis/diagnóstico , Vacunación , Vacunas
5.
BMJ Open ; 12(8): e056615, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2001832

RESUMEN

PURPOSE: Several non-pharmaceutical interventions, such as physical distancing, handwashing, self-isolation, and school and business closures, were implemented in British Columbia (BC) following the first laboratory-confirmed case of COVID-19 on 26 January 2020, to minimise in-person contacts that could spread infections. The BC COVID-19 Population Mixing Patterns Survey (BC-Mix) was established as a surveillance system to measure behaviour and contact patterns in BC over time to inform the timing of the easing/re-imposition of control measures. In this paper, we describe the BC-Mix survey design and the demographic characteristics of respondents. PARTICIPANTS: The ongoing repeated online survey was launched in September 2020. Participants are mainly recruited through social media platforms (including Instagram, Facebook, YouTube, WhatsApp). A follow-up survey is sent to participants 2-4 weeks after completing the baseline survey. Survey responses are weighted to BC's population by age, sex, geography and ethnicity to obtain generalisable estimates. Additional indices such as the Material and Social Deprivation Index, residential instability, economic dependency, and others are generated using census and location data. FINDINGS TO DATE: As of 26 July 2021, over 61 000 baseline survey responses were received of which 41 375 were eligible for analysis. Of the eligible participants, about 60% consented to follow-up and about 27% provided their personal health numbers for linkage with healthcare databases. Approximately 83.5% of respondents were female, 58.7% were 55 years or older, 87.5% identified as white and 45.9% had at least a university degree. After weighting, approximately 50% were female, 39% were 55 years or older, 65% identified as white and 50% had at least a university degree. FUTURE PLANS: Multiple papers describing contact patterns, physical distancing measures, regular handwashing and facemask wearing, modelling looking at impact of physical distancing measures and vaccine acceptance, hesitancy and uptake are either in progress or have been published.


Asunto(s)
COVID-19 , Colombia Británica/epidemiología , COVID-19/epidemiología , Femenino , Desinfección de las Manos , Humanos , Masculino , Máscaras , Distanciamiento Físico
7.
CMAJ ; 194(6): E195-E204, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1686132

RESUMEN

BACKGROUND: Understanding inequalities in SARS-CoV-2 transmission associated with the social determinants of health could help the development of effective mitigation strategies that are responsive to local transmission dynamics. This study aims to quantify social determinants of geographic concentration of SARS-CoV-2 cases across 16 census metropolitan areas (hereafter, cities) in 4 Canadian provinces, British Columbia, Manitoba, Ontario and Quebec. METHODS: We used surveillance data on confirmed SARS-CoV-2 cases and census data for social determinants at the level of the dissemination area (DA). We calculated Gini coefficients to determine the overall geographic heterogeneity of confirmed cases of SARS-CoV-2 in each city, and calculated Gini covariance coefficients to determine each city's heterogeneity by each social determinant (income, education, housing density and proportions of visible minorities, recent immigrants and essential workers). We visualized heterogeneity using Lorenz (concentration) curves. RESULTS: We observed geographic concentration of SARS-CoV-2 cases in cities, as half of the cumulative cases were concentrated in DAs containing 21%-35% of their population, with the greatest geographic heterogeneity in Ontario cities (Gini coefficients 0.32-0.47), followed by British Columbia (0.23-0.36), Manitoba (0.32) and Quebec (0.28-0.37). Cases were disproportionately concentrated in areas with lower income and educational attainment, and in areas with a higher proportion of visible minorities, recent immigrants, high-density housing and essential workers. Although a consistent feature across cities was concentration by the proportion of visible minorities, the magnitude of concentration by social determinant varied across cities. INTERPRETATION: Geographic concentration of SARS-CoV-2 cases was observed in all of the included cities, but the pattern by social determinants varied. Geographically prioritized allocation of resources and services should be tailored to the local drivers of inequalities in transmission in response to the resurgence of SARS-CoV-2.


Asunto(s)
COVID-19/epidemiología , Demografía/estadística & datos numéricos , Determinantes Sociales de la Salud/estadística & datos numéricos , COVID-19/economía , Canadá/epidemiología , Ciudades/epidemiología , Estudios Transversales , Demografía/economía , Humanos , SARS-CoV-2 , Determinantes Sociales de la Salud/economía , Factores Socioeconómicos
8.
Liver Int ; 41(12): 2849-2856, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1443317

RESUMEN

BACKGROUND & AIMS: Public health measures introduced to limit transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), also disrupted various healthcare services in many regions worldwide, including British Columbia (BC), Canada. We assessed the impact of these measures, first introduced in BC in March 2020, on hepatitis C (HCV) testing and first-time HCV-positive diagnoses within the province. METHODS: De-identified HCV testing data for BC residents were obtained from the provincial Public Health Laboratory. Weekly changes in anti-HCV, HCV RNA and genotype testing episodes and first-time HCV-positive (anti-HCV/RNA/genotype) diagnoses from January 2018 to December 2020 were assessed and associations were determined using segmented regression models examining rates before vs after calendar week 12 of 2020, when measures were introduced. RESULTS: Average weekly HCV testing and first-time HCV-positive diagnosis rates fell immediately following the imposition of public health measures by 62.3 per 100 000 population and 2.9 episodes per 1 000 000 population, respectively (P < .0001 for both), and recovered in subsequent weeks to near pre-March 2020 levels. Average weekly anti-HCV positivity rates decreased steadily pre-restrictions and this trend remained unchanged afterwards. CONCLUSIONS: Reductions in HCV testing and first-time HCV-positive diagnosis rates, key drivers of progression along the HCV care cascade, occurred following the introduction of COVID-19-related public health measures. Further assessment will be required to better understand the full impact of these service disruptions on the HCV care cascade and to inform strategies for the re-engagement of people who may have been lost to care because of these measures.


Asunto(s)
COVID-19 , Hepatitis C , Colombia Británica/epidemiología , Hepatitis C/diagnóstico , Hepatitis C/epidemiología , Humanos , Análisis de Series de Tiempo Interrumpido , Salud Pública , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA